Reliable and Precise Command and Signalling

xCammand

Command and signalling -
ergonomic shape,
attractive design.
Switching control
circuit currents reliably
and precisely.

RMQ command and signalling devices
FAK foot and palm switches
SL indication pillars
Fingerprint M22-ESA
LS-Titan and AT position switches
T/P cam switches
ETR timing relays
EMR measuring relay
ESR safety relay For Moeller Electric Sales and Support call KMparts.com (866) 595-9616

Selection aid
Position switches LS-Titan Safety position switches AT
Proximity switches LSI, LSC, LSO

Moeller

Think future. Switch to green.

Movements safely under control Position switches, safety position switches and proximity switches

\times Cammana

From material handling systems to plastic injection moulding; from car washes to doors on trams: the position switches LS-Titan are used wherever there is exact positioning requirement.
With the new world innovation - the electronic position switch LS-E - even exact adjustment of the set position is no longer required. The operating point can be "learned". Simply at the "touch of a button".
The analog position switch with a voltage or current output also enables a range of new applications for the LS-Titan, where mechanical position detection could only provide insufficient information up to now - for example, detecting the position with opened flaps for flue gasses.

The new electronic position switches LSE-Titan are the ideal connection directly to the world of automation. This new innovation enables exact and continuous detection of the position of a flue gas flap or a servo drive. The position is converted to an analog voltage ($0 . .10 \mathrm{~V}$) or current ($4 . .20 \mathrm{~mA}$) and can be continuously signalled to the automation world. Even objects of differing thickness and size, such as brake blocks, can be detected and the signal can be processed. Simple, speed-dependent controls of ventilator motors or smoke removal systems indicate how wide the air ventilation flap is opened (e.g. 25,50 or 75 percent) and thus save energy and protect and conserve the material.

For applications such as final inspections with packaging systems, non-intrusive detection is necessary in order to guarantee a smooth interruption-free process and extremely low levels of rejects. Capacitive proximity switches feature the ideal properties for this task. The advantage: they can detect both metallic and non-metallic objects non-intrusively and free of wear. Non-metals can be detected - even through other mediums. Thus, empty packages are detected, sorted out and can be refilled in order to guarantee a consistent high-level of quality. Further typical examples are for example, detection of wooden palettes, plastic containers or even liquids in glass containers.

Position switches LS-Titan

They are used wherever positions must be reliably detected. They are available either in robust metal or light plastic enclosure designs. Exchangeable operating heads enable flexible use for all applications. The highlight of the series, the LSE-Titan electronic position switch, connects mechanical position switches to the world of automation. Positions can be continually detected and monitored with these switches.

Safety position switches AT

Position switches for detection of safetyrelevant facilities and equipment, e.g. doors, grilles or flaps. In addition to the standard safety switches, the range includes position switches with antitamper features for enhanced protection of personnel and processes, and only enable after a delay time. This ensures for example, that saws must come to a standstill or process stages must be completed before the machine, system or plant can be approached.

Proximity switches LSI, LSC, LSO

Modern automation engineering is practically unimaginable without the use of non-contact and non-invasive sensors. The speeds with which the processes are detected make the wearfree and robust sensors indispensable. Even under harsh conditions such as use in heavily contaminated environments. Inductive, capacitive or optical: the right proximity switch for every situation enables optimum, fast and safe use.

Electronic position switch LSE-Titan ${ }^{\circledR}$ Setting a variable operating point

The electronic position switch LSE has an operating point that can be set variably. Two fast and bounce-free PNP switch outputs enable high switching frequencies. They are protected against short-circuit and overload and are equipped with an abrupt switching behaviour. This guarantees a defined and reproducible operating point. The actual operation point is in a range between 0.5 mm to 5.5 mm (supplied ex-works $=3 \mathrm{~mm}$).

The setting to the "new" operating point is performed as follows: The plunger must be moved from the "old" to the "new" operating position. Now the set button should be pressed for a duration of 1 sec . The LED now flashes with a higher pulse frequency and the new operation point is set retentively.

30°

60°

$\otimes \curvearrowleft \sqcap \sqcap$

switching point setup

Position Switch LSE-Titan ${ }^{\text {® }}$		
Version	Contact sequence diagram for plunger	Part no.
Plastic version		LSE-02
		LSE-11
Plastic version		$\begin{aligned} & \text { LSE-AI } \\ & 4-20 \mathrm{~mA} \end{aligned}$
		$\begin{aligned} & \text { LSE-AU } \\ & 0-10 \text { V } \end{aligned}$

Analog electronic position switch LSE-Titan: Connecting analog, mechanically actuated position switches directly to the automation world.

The analog position switches LSE-AI ($4-20 \mathrm{~mA}$) and LSE-AU ($0-10 \mathrm{~V}$) are a further electronic position switch innovation. It is possible for the first time, to continuously monitor the actual position of a flue gas flap or an actuator. Hereby, the position is detected on an analog basis with voltage ($0-10 \mathrm{~V}$) or current ($4-20 \mathrm{~mA}$) and continuously signaled to the automation world. Even objects with differing thicknesses, such as brake blocks can be detected and the signal can be processed.

Simple speed-dependent controls for fan motors or smoke extraction fans signal the opening width of the air flap (e.g. 25,50 or 75 percent) and thus save energy and material. The analog position switch also features a diagnostics output for further signal processing. It enables monitoring and evaluation of the safe state at any time. The position switch also features a self-test function: Outputs Q1 and Q2 are continuously tested for overload, short-circuit to OV and short-circuit to $+U_{\mathrm{e}}$.

Simply snap on the command device RMQ-Titan ${ }^{\circledR}$

A further unique feature is the ability to combine a control circuit device from the RMQ-Titan range with the LS-Titan position switches. Pushbutton actuators, selector switches or emergency-stop buttons can be simply snapped on directly as the operating heads on each position switch. The combined unit maintains the degree of protection IP66 on both the front and rear.

Simple to mount

The operating heads can be attached in all 4 directions ($4 \times 90^{\circ}$) and can be quickly and safely snap mounted using the bayonet fitting. Modern, reliable and fast mounting is assured in conjunction with the vibration-proof and maintenance-free cage-clamp terminals.

Position Switch LS-Titan ${ }^{\circledR}$

[^0]${ }^{2}$ LS/LSM-..S = Snap-Action contact

	Contact sequence diagram for roller lever short	Roller lever short	Contact sequence diagram for	Roller lever long din En 50047	Contact sequence diagram for roller lever large	Roller lever large	Contact sequence diagram for rotary lever, adjustable roller lever and actuating rod	Rotary lever DIN EN 50047	Adjustable roller lever	Actuating rod	
		Part no .	long	Part no.		Part $n 0$.		Part no.	Part no.	Part no.	
			$\exists_{\\| c}^{\prime \prime \prime}$	LS-02/L							
		LS-11/LS		LS-11/L		LS-11/LB		LS-11/RL	LS-11/RLA		
		LS-11D/LS		LS-11D/L							
				LS-11S/L ${ }^{2}$				LS-11S/RL ${ }^{2}$	LS-11S/RLA ${ }^{2}$	LS-11S/RR ${ }^{2}$	
				LSM-02/L							
				LSM-11/L				LSM-11/RL	LSM-11/RLA		
				LSM-11D/L							
				LSM-11S/L ${ }^{2}$				LSM-11S/RL ${ }^{2}$	LSM-11S/RLA ${ }^{2}$	LSM-11S/RR ${ }^{2}$	

LS-Titan ${ }^{\circledR}$ operating heads, accessories

$\Theta=$ positive opening safety function to IEC/EN 60947-5-1
${ }^{2}$ LS/LSM-..S = Snap-Action contact

Door safety switch ATR Position safety switch AT 0

Safety for persons and processes door safety switch ATR-... $/ \mathrm{T}(\mathrm{K}, \mathrm{S})$

The safety of all personnel working in production halls must be ensured at all times. Protective doors and hinged flaps keep people out of hazardous areas. Where an attempt is made to open a protected door or flap during operation, the hingeoperated switches ATR/TS and the hasp-operated switches ATR/TK immediately disconnect the power supply to the machine or installation. Opening is registered at an angle of only 5 degrees, and so even tampering is not possible.
Wherever tampering must be absolutely prevented and protruding actuating levers would be unacceptable, door switches offer protection on tooling and packaging machines or in areas where robots operate.

If the hasp-operated switches ATR/TK are fitted inside a cover, tampering is completely eliminated.

Protect and lock:
 safety position switch AT 0-...-ZBZ

By reliable securing and interlocking of protective doors, the AT 0-ZBZ increases the safety standards for the protection of personnel and processes.

The AT 0-ZBZ operates according to one of two principles: on the basis of magnetpowered or spring-powered interlocking.

The spring-powered interlock is optimally suited for enhanced personnel protection. The door or protective guard remains safely locked even in the event of power failure. In an emergency, the protective guard can be opened using an auxiliary release mechanism. Magnet-powered interlock is used in personnel and process protection. The protective cover is interlocked when operational voltage is applied, and can therefore be opened directly in the event of power failure.

Switch off the danger:
 safety position switches AT...ZB

Safety position switches AT 0-ZB and AT 4-ZB are used on centrifuges, motor and gearbox covers, presses, etc.. If the protective guard is opened, they disconnect the power and in so doing, remove the danger. AT 0-ZB and AT 4-ZB comply with EN 1088 "Interlocks with and without mechanical securing action". The selection of the necessary protective device is thus simplified. All safety position switches also fulfil the demands for use in safety circuits by their use of positively driven switching elements and positively opening contacts.
Equipped with double-break contacts, they are also suitable for use in the configuration of redundant safety circuits. The switches featuring double break contacts are suitable for use with electronic devices in accordance with IEC/EN 61 131-2, enabling the safe exchange of information with any controller.

Door safety switch, IP65			
Complete units Contacts ■closed \square open $\mathrm{Zw}=$ Positive opening sequence	Door flap safety switch ATR-.../TK narrow	Complete units Contacts ■closed \square open Zw = Positive opening sequence	Door hinge safety switch ATR-.../TS narrow
Switching diagram	Part no.	Switching diagram	Part no.
$0-\int_{14}^{13} \int_{22}^{21}$	ATR-11-1-I/TKG	$0-\left.\int_{14}^{13}\right\|_{22} ^{13}$	ATR-11-1-I/TS
$0-\frac{11}{f_{12}} f_{22}^{21}$	ATR-02-1-I/TKG	$0-\frac{11}{11} f_{12}^{21}$	ATR-02-1-I/TS

AT 0...-ZBZ safety position switches, IP65			
Basic unit		Spring-powered interlock (closed-circuit principle)	Magnet-powered interlock (open, circuit principle)
Rated control voltage U_{s} magnetic drive		Part no.	Part no.
	24 VDC	AT0-11-24 DFT-ZBZ/X	AT0-11-24 DMT-ZBZ/X
		AT0-02-24 DFT-ZBZ/X	AT0-02-24 DMT-ZBZ/X
		AT0-11-120 AFT-ZBZ/X	AT0-11-120 AMT-ZBZ/X
		ATO-02-120 AFT-ZBZ/X	AT0-02-120 AMT-ZBZ/X
	$230 \mathrm{VDC} 50 /\left.60 \mathrm{~Hz} \quad 8\right\|_{14} ^{11} \mathrm{Nan}$	ATO-11-230 AFT-ZBZ/X	AT0-11-230 AMT-ZBZ/X
		ATO-02-230 AFT-ZBZ/X	AT0-02-230 AMT-ZBZ/X

AT...-ZB safety position switches, IP65

Complete unit		Narrow Part no.
	AT0-11-1-ZB	

| Actuators for combination with AT O...-ZBZ basic units | | Mechanical
 holding force | Part no. |
| :--- | :--- | :--- | :--- | :--- |
| Version | Straight for sliding doors | $2,000 \mathrm{~N}$ | G-ZBZ |
| Angled for swing doors | Flexible, angled for doors that do not close precisely | $2,000 \mathrm{~N}$ | $\mathrm{~W}-\mathrm{ZBZ}$ |
| Flexible, straight for doors that do not close precisely | $1,000 \mathrm{~N}$ | F-ZBZ | |
| Straight, with increased tolerance in closing direction | | | |
| for doors that does not close precisely | | | |

For Moeller Electric Sales and Support call KMparts.com (866) 595-9616

Proximity switches -
 safe switching without contact

Inductive proximity switches
Inductive proximity switches are the robust standard product to safely detect the presence of metallic objects. The non-contact detection with electronic output ensures almost an unrestricted lifespan as there is no wear, even under extremely contaminated conditions.

Capacitive proximity switches
Capacitive proximity switches are used wherever non-metallic objects have to be detected. It is possible for example to control fill levels, or prevent that containers run dry or overflow. Substances can even be detected through glass, plastic, etc.

Optical proximity switches

The reflected-light beam switch contains a transmitter and receiver and can detect objects which are within an operating range of up to 300 mm . The reflectedlight barrier operates with reflectors of different sizes. In order to detect objects with glossy surfaces, the series also includes types with polarising filters. Thus, ranges of up to 6000 mm can be covered.

Inductive proximity switches LSI						
Enclosure style	Round design				Rectangular design	
	DC voltage version - switching to + pole (PNP)					
	U_{e} : $10 . .30 \mathrm{~V}$ DC				$U_{\mathrm{e}}: 10 . .65 \mathrm{~V}$ DC	$U_{\mathrm{e}}: 10 . .30 \mathrm{~V} D C$
	Part no. M 8x1	Part no. M 12x1	Part no. M 18x1	Part no. M 30x1.5	$\begin{array}{\|l\|} \hline \text { Part no. } \\ \text { 114x40x40 } \end{array}$	$\begin{aligned} & \text { Part no. } \\ & 65 \times 40 \times 40 \end{aligned}$
Plastic housing*, Fitting in metal: Flush		LSI-R12P-F2-LD Sn 2mm, N/O	LSI-R18P-F5-LD Sn 5mm, N/0	LSI-R30P-F10-LD Sn 10 mm , N/0	$\begin{aligned} & \text { LSI-Q40P-F20-CD } \\ & \text { Sn } 20 \mathrm{~mm}, \mathrm{C} / 0 \end{aligned}$	
Plastic housing*, Fitting in metal: Non-flush		LSI-R12P-NF4-LD Sn 4mm, N/O	LSI-R18P-NF8-LD Sn 8mm, N/0	LSI-R30P-NF15-LD Sn 15mm, N/O	LSI-Q40P-NF40-CD Sn 40 mm , C/O	
Plastic insulated housing with plug-in connection, Fitting in metal: Flush						LSI-Q4OP-F20-PD Sn 20 mm , N/0
Plastic insulated housing with plug-in connection, Fitting in metal: Non-flush						LSI-Q4OP-NF35-CD Sn 35mm, N/0
Metal housing with 2 m connection cable, Flush	LSI-R8S-F1-LD Sn 1.5 mm , N/O	LSI-R12M-F2-LD Sn 2mm, N/O	LSI-R18M-F5-LD Sn 5mm, N/O	LSI-R30M-F10-LD Sn 10 mm , N/O		
Metal housing with plug-in connection, Flush	LSI-R8S-F1-PD Sn 1.5 mm , N/O	LSI-R12M-F2-PD Sn 2mm, N/O	LSI-R18M-F5-PD Sn 5mm, N/O	LSI-R30M-F10-PD Sn 10 mm , N/0		
Metal housing with plug-in connection, Non-flush	LSI-R8S-NF3-PD Sn 3mm, N/0	LSI-R12M-NF4-PD Sn 4mm, N/0	LSI-R18M-NF8-PD Sn 8mm, N/0	LSI-R30M-NF15-PD Sn 15 mm , N/O		
Alternating voltage version 20-250 V AC, 50/60 Hz						
Plastic housing*, Fitting in metal: Flush		LSI-R12P-F2-LA Sn 2mm, N/O	$\begin{aligned} & \text { LSI-R18P-F5-LA } \\ & \text { Sn 5mm, N/O } \\ & \hline \end{aligned}$	LSI-R30P-F10-LA Sn 10 mm , N/O	LSI-Q40P-F20-CA Sn 20 mm , P	
Plastic housing*, Fitting in metal: Non-flush					LSI-Q40P-NF35-CA Sn 35 mm , P	

* on round style: 2 m connecting cable, on rectangular style: with terminal connection

Sn: rated switching distance

M12 x 1 plug connector
N/O = normally open
$C / O=$ changeover
$\mathrm{P}=$ programmable (break contact or make contact)

Dimensions

Position Switches LS-Titan ${ }^{\circledR}$

Position switches

LS-..., LSM-..., LSE-..

(1) Tightening torque of cover screw: $1.0 \mathrm{Nm} \pm 0.2 \mathrm{Nm}$ (2) Only with LS (plastic design)

LS-11(S)/P

LS(M)-11(S)/RLA

(1) Setting range from 54.5 to 97

LS(M)-11S/S

$L S(M)-11 S / R R$

(1) LS.../RR§ 150

LS.../RRM $\leqq 210$

Technical Data				Complete unit to LS, LSM	LSE-11, LSE-02	LSE-AI	LSE-AU
General							
Standards and regulations				IEC/EN 60947	IEC/EN 60947, EN 61000-4	$\begin{aligned} & \text { IEC/EN 60947, } \\ & \text { EN 61000-4 } \end{aligned}$	$\begin{aligned} & \text { IEC/EN 60947, } \\ & \text { EN 61000-4 } \end{aligned}$
Climatic proofing				Damp heat, constant to IEC 60068-2-3, Damp heat, cyclic to IEC 60068-2-30			
Ambient temperature		${ }^{\circ} \mathrm{C}$		-25/+70	-25/+70	-25/+70	-25/+70
Mounting position				as required	as required	as required	as required
Degree of protection				IP66	IP66	IP66	IP66
Cage Clamp terminal capacity							
solid			mm ${ }^{2}$	$1 \times(0.5-2.5)$	$1 \times(0.5-2.5)$	$1 \times(0.5-2.5)$	$1 \times(0.5-2.5)$
flexible with ferrule		DIN 46228	mm^{2}	$1 \times(0.5-1.5)$	$1 \times(0.5-1.5)$	$1 \times(0.5-1.5)$	$1 \times(0.5-1.5)$
Power Supply							
Rated voltage		U_{e}	VDC	-	12-30	$24(-15 \% /+20 \%)$	$24(-15 \% /+20 \%)$
Rated operational current							
12 V		I	mA	-	15	-	-
24 V		I	mA	-	18	28-45	24
30 V		I	mA	-	19	-	-
Conductors/Switching capacity							
Rated impulse withstand voltage		$U_{\text {imp }}$	VAC	4000	-	-	-
Rated isolation		U_{i}	V	400	-	-	-
Overvoltage categoryl pollution degree				III/3	III/3	111/3	IIII3
Rated operational current							
AC-15		I_{e}	A	6	-	-	-
	$230 \mathrm{~V} / 240 \mathrm{~V}$	$\underline{I_{e}}$	A	6	-	-	-
	$400 \mathrm{~V} / 415 \mathrm{~V}$	I_{e}	A	4	-	-	-
DC-13	24 V	I_{e}	A	3	0.2	-	-
	110 V	I_{e}	A	0.8	-	-	-
	220 V	I_{e}	A	0.3	-	-	-
Analog output Q1							
Output voltage (max. 10 mA)			VDC	-	-	-	0-10
Output current			mA	-	-	4-20	-
Fault scenario			V	-	-	0	0
Resolution			Steps	-	-	100	100
Step tolerance			Step	-	-	<2	<2
Load impedance, resistive load			Ω	-	-	<400	>1000
Digital diagnostic output Q2 (switching to +pole PNP)							
Normal operation			V	-	-	approx. U_{e}	approx. U_{e}
			mA	-	-	<200	<200
Fault scenario			V	-	-	0	0
Control circuit reliability							
at 24 V DC/5 mA		H_{F}	Fault- frequency	$<10^{-7},<1 \text { fault in }$ 10^{7} operations	-	-	-
at $5 \mathrm{~V} \mathrm{DC} / 1 \mathrm{~mA}$		H_{F}	Faultfrequency	$<10^{-6},<1$ fault in 5×10^{6} operations	-	-	-
Mains frequency			Hz_{2}	max. 400	-	-	-
Short-circuit rating in closed state (IEC/EN 60947-5-1)							
Fuseless			Type	$\begin{aligned} & \text { PKZM 0-10 } \\ & \text { PXL-B6/1 } \end{aligned}$	non-inherently shortcircuit proof, after reset switch back on	non-inherently shortcircuit proof, after rese switch back on	non-inherently shortcircuit proof, after rese switch back on
Max. fuse			A gG/gl	10	-	-	-
Short-circuit rating to IEC/EN 60947-5-1							
Max. fuse			A gG/gl	6	-	-	-
Repetition accuracy			mm	± 0.02	± 0.02	± 0.02	± 0.02
Note $\begin{gathered}\text { c } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { A } \\ \text { S } \\ \\ \\ \end{gathered}$		The following applies for LSE-11, LSE-02: Ensure that the voltage supply is not interrupted when setting the switching point. Cage-Clamp is a registered trademark of Wago Kontakttechnik, 32423 Minden, Germany. Accessories and actuation tools for the Cage-Clamp connection available from Wago: Actuation tool, 2-way, Wago article no. 280-432 Screwdriver short, angled, Wago article no. 210-258 Jumper insert, grey, Wago article no. 264-402					

[^0]: $\Theta=$ positive opening safety function to IEC/EN 60947-5-1

